Корреляционная зависимость формула. Что означает понятие корреляции простыми словами? Виды коэффициента корреляции

Коэффициент корреляции - это степень связи между двумя переменными. Его расчет дает представление о том, есть ли зависимость между двумя массивами данных. В отличие от регрессии, корреляция не позволяет предсказывать значения величин. Однако расчет коэффициента является важным этапом предварительного статистического анализа. Например, мы установили, что коэффициент корреляции между уровнем прямых иностранных инвестиций и темпом роста ВВП является высоким. Это дает нам представление о том, что для обеспечения благосостояния нужно создать благоприятный климат именно для зарубежных предпринимателей. Не такой уж и очевидный вывод на первый взгляд!

Корреляция и причинность

Пожалуй, нет ни одной сферы статистики, которая бы так прочно вошла в нашу жизнь. Коэффициент корреляции используется во всех областях общественных знаний. Основная его опасность заключается в том, что зачастую его высокими значениями спекулируют для того, чтобы убедить людей и заставить их поверить в какие-то выводы. Однако на самом деле сильная корреляция отнюдь не свидетельствует о причинно-следственной зависимости между величинами.

Коэффициент корреляции: формула Пирсона и Спирмана

Существует несколько основных показателей, которые характеризуют связь между двумя переменными. Исторически первым является коэффициент линейной корреляции Пирсона. Его проходят еще в школе. Он был разработан К. Пирсоном и Дж. Юлом на основе работ Фр. Гальтона. Этот коэффициент позволяет увидеть взаимосвязь между рациональными числами, которые изменяются рационально. Он всегда больше -1 и меньше 1. Отрицательно число свидетельствует об обратно пропорциональной зависимости. Если коэффициент равен нулю, то связи между переменными нет. Равен положительному числу - имеет место прямо пропорциональная зависимость между исследуемыми величинами. Коэффициент ранговой корреляции Спирмана позволяет упростить расчеты за счет построения иерархии значений переменных.

Отношения между переменными

Корреляция помогает найти ответ на два вопроса. Во-первых, является ли связь между переменными положительной или отрицательной. Во-вторых, насколько сильна зависимость. Корреляционный анализ является мощным инструментом, с помощью которого можно получить эту важную информацию. Легко увидеть, что семейные доходы и расходы падают и растут пропорционально. Такая связь считается положительной. Напротив, при росте цены на товар, спрос на него падает. Такую связь называют отрицательной. Значения коэффициента корреляции находятся в пределах между -1 и 1. Нуль означает, что зависимости между исследуемыми величинами нет. Чем ближе полученный показатель к крайним значениям, тем сильнее связь (отрицательная или положительная). Об отсутствии зависимости свидетельствует коэффициент от -0,1 до 0,1. Нужно понимать, что такое значение свидетельствует только об отсутствии линейной связи.

Особенности применения

Использование обоих показателей сопряжено с определенными допущениями. Во-первых, наличие сильной связи, не обуславливает того факта, что одна величина определяет другую. Вполне может существовать третья величина, которая определяет каждую из них. Во-вторых, высокий коэффициент корреляции Пирсона не свидетельствует о причинно-следственной связи между исследуемыми переменными. В-третьих, он показывает исключительно линейную зависимость. Корреляция может использоваться для оценки значимых количественных данных (например, атмосферного давления, температуры воздуха), а не таких категорий, как пол или любимый цвет.

Множественный коэффициент корреляции

Пирсон и Спирман исследовали связь между двумя переменными. Но как действовать в том случае, если их три или даже больше. Здесь на помощь приходит множественный коэффициент корреляции. Например, на валовый национальный продукт влияют не только прямые иностранные инвестиции, но и монетарная и фискальная политика государства, а также уровень экспорта. Темп роста и объем ВВП - это результат взаимодействия целого ряда факторов. Однако нужно понимать, что модель множественной корреляции основывается на целом ряде упрощений и допущений. Во-первых, исключается мультиколлинеарность между величинами. Во-вторых, связь между зависимой и оказывающими на нее влияние переменными считается линейной.

Области использования корреляционно-регрессионного анализа

Данный метод нахождения взаимосвязи между величинами широко применяется в статистике. К нему чаще всего прибегают в трех основных случаях:

  1. Для тестирования причинно-следственных связей между значениями двух переменных. В результате исследователь надеется обнаружить линейную зависимость и вывести формулу, которая описывает эти отношения между величинами. Единицы их измерения могут быть различными.
  2. Для проверки наличия связи между величинами. В этом случае никто не определяет, какая переменная является зависимой. Может оказаться, что значение обеих величин обуславливает какой-то другой фактор.
  3. Для вывода уравнения. В этом случае можно просто подставить в него числа и узнать значения неизвестной переменной.

Человек в поисках причинно-следственной связи

Сознание устроено таким образом, что нам обязательно нужно объяснить события, которые происходят вокруг. Человек всегда ищет связь между картиной мира, в котором он живет, и получаемой информацией. Часто мозг создает порядок из хаоса. Он запросто может увидеть причинно-следственную связь там, где ее нет. Ученым приходится специально учиться преодолевать эту тенденцию. Способность оценивать связи между данными объективно необходима в академической карьере.

Предвзятость средств массовой информации

Рассмотрим, как наличие корреляционной связи может быть неправильно истолковано. Группу британских студентов, отличающихся плохим поведением, опросили относительно того, курят ли их родители. Потом тест опубликовали в газете. Результат показал сильную корреляцию между курением родителей и правонарушениями их детей. Профессор, который проводил это исследование, даже предложил поместить на пачки сигарет предупреждение об этом. Однако существует целый ряд проблем с таким выводом. Во-первых, корреляция не показывает, какая из величин является независимой. Поэтому вполне можно предположить, что пагубная привычка родителей вызвана непослушанием детей. Во-вторых, нельзя с уверенностью сказать, что обе проблемы не появились из-за какого-то третьего фактора. Например, низкого дохода семей. Следует отметить эмоциональный аспект первоначальных выводов профессора, который проводил исследование. Он был ярым противником курения. Поэтому нет ничего удивительного в том, что он интерпретировал результаты своего исследования именно так.

Выводы

Неправильное толкование корреляции как причинно-следственной связи между двумя переменными может стать причиной позорных ошибок в исследованиях. Проблема состоит в том, что оно лежит в самой основе человеческого сознания. Многие маркетинговые трюки построены именно на этой особенности. Понимание различия между причинно-следственной связью и корреляцией позволяет рационально анализировать информацию как в повседневной жизни, так и в профессиональной карьере.

Транскрипт

1 Иткина А.Я. Коэффициенты корреляции и специфика их применения Основное назначение корреляционного анализа выявление связи между двумя или более изучаемыми переменными. Чаще всего анализируется совместное согласованное изменение двух исследуемых показателей, являющихся случайными величинами. Данная изменчивость обладает тремя основными характеристиками: формой, направлением и силой. По форме корреляционная связь может быть линейной или нелинейной. По направлению положительной или отрицательной. По силе тесной, слабой или отсутствовать. Корреляционный анализ возможен как на основе графического представления исходных данных, так и с помощью вычисления коэффициента корреляции и проверки его статистической значимости. Обычно одно исследование дополняет другое. В настоящее время разработано множество различных коэффициентов корреляции. Наиболее применяемыми являются r-пирсона, r-спирмена и τ-кендалла. В зависимости от решаемой задачи и от вида исходных данных стоит отдавать предпочтение одному из этих коэффициентов. Общим для них является то, что все упомянутые коэффициенты применяются для изучения взаимосвязи двух переменных, измеренных на одной и той же выборке. Они меняются в интервале от -1 до +1 и их знак показывает направление связи. Попробуем теперь разобраться в их различиях. Коэффициент корреляции Пирсона (Karl Pearson, английский математик, статистик, биолог и философ) применим, если обе переменные измерены в метрической (интервальной или абсолютной) шкале. Ограничением при использовании коэффициента корреляции Пирсона является отличие распределения хотя бы одной из переменных от нормального. Особенно сильно r- Пирсона реагирует на наличие выбросов. Для представленного на Рис. 1 облака точек r-пирсона равен,98, если учитывать только синие точки и,27, если считать по всем точкам, т.е. вместе с розовой точкой выбросом. Поскольку коэффициент r-пирсона есть мера 1

2 Коэффициенты корреляции и специфика их применения линейной связи, он неприменим для анализа нелинейных связей. Равенство r-пирсона означает, что линейная связь между переменными отсутствует r xy Рис. 1. Облако точек 1. Значение выборочного (x x)(y y) (x x) (y y) 2 2 r-пирсона может быть вычислено по формуле:. Равенство r-пирсона 1 говорит о функциональной линейной зависимости между изучаемыми переменными. Важным свойством r- Пирсона является нечувствительность к линейным преобразованиям переменных. значит Пусть kx b, тогда r y n n n n (kx b) kx b k x n b k x b, а n n n (kx b (k x b))(y y) (k(x x))(y y) (kx b (k x b)) (y y) (k (x x)) (y y) k (x x)(y y) k (x x)(y y) k r k (x x) (y y) k (x x) (y y) k положительном k коэффициенты корреляции совпадут, а при отрицательном ry xy, т.е. при r. xy Значимость r-пирсона, т.е. отличие его от, можно проверить с помощью статистики Стьюдента t r n r 2

3 Иткина А.Я. Гипотеза H:, rxy альтернативная H: 1 rxy. Соответственно, если t t n нулевая гипотеза отвергается в пользу альтернативной. Смысл (крит 2 ; 2) тестирования нулевой гипотезы, при условии репрезентативности имеющихся выборок, заключается в проверке предположения о случайности корреляционной связи между переменными, т.е. о независимости случайных величин (если связь линейна). Теория и практика Сложение 1 баррелей нефти и 1 км трубопроводов бессмысленно, но технически возможно (1+1=2). Вычисление коэффициента корреляции Пирсона для порядковых переменных, для переменных, имеющих произвольное распределение и даже для номинативных переменных технически возможно и даже имеет некоторый смысл. Итак, рассчитанный по формуле коэффициент корреляции является выборочной оценкой теоретической корреляции двух случайных величин r xy cov(xy ;) D(x) D(y). Для случайной величины, имеющей двумерное нормальное распределение, выборочный коэффициент корреляции при условии, что теоретический равен, имеет распределение Стьюдента с (n 2) степенями свободы. Именно на этом факте основана проверка гипотезы о равенстве коэффициента корреляции. Расчет коэффициента корреляции Пирсона в случаях нарушения условий его использования это попытка установить факт наличия или отсутствия связи между величинами. К сожалению в этих случаях распределение r-пирсона не известно. Поэтому выводы на основе такого анализа не надежны. Рангом наблюдения называют номер, который получит это наблюдение в упорядоченной по какому-либо признаку совокупности имеющихся данных. Например для выборки 3, 9, 26, -4, 11, 5, ранжированной по возрастанию рангами будут числа от 1 до 7: 3, 5, 7, 1, 6, 2, 4. Трудности в назначении рангов возникают, если среди элементов выборки встречаются совпадающие. Набор одинаковых наблюдений называют связкой, а количество наблюдений в одной связке ее размером. Связанным или средним рангом называется число, равное среднему арифметическому тех рангов, которые были бы у 3

4 Коэффициенты корреляции и специфика их применения чисел в связке, если бы они различались. Например для выборки 6, 15, 12, 6, 1, 15, 9, 15 соответствующие ранги будут 1 1 2, 7, 5, 1 1 2, 4, 7, 3, 7. Коэффициент корреляции Спирмена (Charles Edward Spearman, английский психолог, статистик) применим, если обе переменные измерены в количественной (метрической или порядковой) шкале. Отсутствие ограничений на вид распределения исходных данных (переменных) вызвано тем, что это ранговый коэффициент корреляции. Спирмена n 6 (k t) 1 r 1 3 n n 2 Коэффициент корреляции Спирмена проигрывает r-пирсона только в меньшей чувствительности к связи в случаях несущественного отклонения распределения переменных от нормального. Идея r-спирмена в том, что обе переменные ранжируются (обозначим ранги k и t). И вычисляются разности между рангами для одного и того же наблюдения. Если для всех наблюдений разности близки к, значит рост одной переменной почти всегда сопровождается увеличением другой. По формуле видно, что в этом случае r-спирмена будет близок к 1. Для ручного подсчета удобна формула r-, которую можно использовать при отсутствии связанных рангов или небольшом (<1% наблюдений) их количестве. Ту же самую величину r-спирмена, более того без ограничения на связанные ранги, можно получить применив формулу r-пирсона к ранжированным переменным. Значимость коэффициента корреляции Спирмена проверяется по тем же формулам, что и значимость r-пирсона для n 3. Для выборок небольшого размера лучше пользоваться таблицами критических значений. Коэффициент корреляции Кендалла (Maurce George Kendall, английский статистик) применим, если обе переменные измерены в количественной 4

5 Иткина А.Я. (метрической или порядковой) шкале. Он также как и коэффициент корреляции Спирмена является ранговым. Основная идея, заложенная в τ-кендалла, заключается в изучении направления связи между переменными путем попарных сравнений между собой наблюдений. Ситуацию, при которой изменение Х для двух наблюдений сонаправлено с изменением Y для тех же наблюдений, назовем совпадением. А разнонаправленное изменение назовем инверсией. Например, если ранги по Х - 2, 1, 3, 4, а по Y - 3, 1, 2, 4, то изменение рангов при переходе от 1-го наблюдения ко второму сонаправлено (уменьшение), а при переходе от 1-го к третьему разнонаправлено (по Х рост, а по Y падение). Таких попарных сравнений нужно выполнить N(N 1), что весьма 2 трудоемко. Поэтому для ручного ета τ-кендалла принято упорядочивать наблюдения по одной из переменных, например по Х. τ-кендалла это разность относительных частот совпадений и инверсий для всех наблюдений: P Q, в преобразованном виде N(N 1) / 2 4Q 4P 1 1, N (N 1) N (N 1) где P число совпадений, Q число инверсий, P Q N (N 1) / 2. В Таблица 1 приведен пример подсчета числа совпадений и инверсий. Столбцы с 6 по 9 приведены для лучшего понимания того, что направление сортировки не влияет на величину τ- Кендалла. Сравниваем каждый ранг в столбце 3 со значениями, расположенными ниже его. Поскольку столбец 2 упорядочен по возрастанию, совпадениями будут все случаи, когда наблюдение с меньшим рангом выше по столбцу, чем наблюдение с большим рангом. При заполнении столбца 8 совпадением окажется значение ранга большее (столбец 7), чем у наблюдения ниже по столбцу. Например ранг 4 больше, чем 2, 3 и 1, т.е. всего 3 совпадения. 5

6 Коэффициенты корреляции и специфика их применения Таблица 1. Наблюдения Ранги Совпадения Инверсии Ранги Совпадения Инверсии Х Y P Q Х Y P Q (6 1) / 2 15 Σ = 11 Σ = 4 Σ = 11 Σ = 4 Это означает, что совпадения встречаются почти на 47 процентов чаще, чем инверсии. Другими словами вероятность совпадения, а инверсии Значимость коэффициент корреляции Кендалла проверяется по таблице стандартного нормального распределения, для чего рассчитывается статистика PQ 1 N (N 1) (2N 5) /18 и ее величина сравнивается с табличным значением. Либо находится величина вероятности, соответствующая, и она сравнивается с уровнем значимости. При этом надо помнить, что нулевой гипотезе об отсутствии корреляционной связи соответствует двусторонняя альтернатива о ее наличии. Для представленного выше примера (6 1) (2 6 5) / ,13, табл (,25) 1,96, т.е. на уровне значимости 3 17 /18 28,3 α=,5 не обнаружено корреляционной связи между переменными Х и Y. Или через вероятность p () 2, поскольку альтернатива двусторонняя).,129*2 =,258 >,5, получаем тот же вывод (умножаем на 6

7 Иткина А.Я. Основная идея ранговых коэффициентов корреляции заключается в том, что возможное количество перестановок n чисел-рангов равно n! и любая перестановка равновероятна. Поэтому вероятность случайного совпадения рангов у двух выборок ничтожно мала. При верности H распределение коэффициентов r-спирмена и τ- Кендалла симметрично и концентрируется около нуля. Для небольших выборок имеются таблицы критических значений статистик Спирмена и Кендалла, а при увеличении n их распределение приближается к стандартному нормальному. Если же H неверна, то последовательность рангов k каким-то образом "влияет" на последовательность t. Например, если ранги полностью совпадают, то это означает, что рост одной переменной однозначно связан с ростом другой переменной. Именно поэтому особенностью ранговых коэффициентов является выявление не только линейной связи между переменными, но и любого вида монотонной связи. Для представленного на Рис. 2 облака точек r-спирмена/τ-кендалла равны 1, если учитывать только синие точки и,75/,76, если считать по всем точкам, т.е. вместе с розовой точкой выбросом. Возвращаясь к Рис. 1, мы видим, что выброс привел к уменьшению r-пирсона на,98-,27=,71; r-спирмена на,99-,53=,46; τ-кендалла на,95-,64=,31. Т.е. плюсом ранговых коэффициентов корреляции является их меньшая чувствительность к выбросам, чем у r-пирсона Рис. 2. Облако точек 2. Поскольку коэффициенты r-спирмена и τ-кендалла показывают меру монотонной связи, они неприменимы для анализа связей, меняющих свое направление. Равенство r-спирмена или τ-кендалла означает, что монотонная связь между переменными отсутствует. 7

8 Коэффициенты корреляции и специфика их применения Пример 1. Эксперты оценивали риски освоения площади N месторождения М. Риски упорядочены в порядке убывания (от 1 максимального до 8 минимального). Согласованы ли оценки экспертов? Риски Оценки эксперта 1 Оценки эксперта 2 P (совпадения) Таблица 2. Q (инверсии) Геологический Технологический Технический Кредитный Спекулятивный Политический 6 7 Падение спроса 7 7 Природный форс-мажор 8 7 Σ = 2 Σ = Расчет совпадений и инверсий приведен в Таблица 2, вычислим поправочные коэффициенты: K x 3 (31) 3 (31) 3 (3 1) N(N 1) 3; Ky 6; 28; Тогда коэффициент корреляции Кендалла Коэффициент корреляции Спирмена для экспертных оценок равен,923, τ- Кендалла,853. Несмотря на отсутствие инверсий, коэффициенты корреляции меньше 1, поскольку наличие связок уменьшает изменчивость данных и соответственно возможности оценки корреляционной связи. Выше был приведен ет для проверки значимости τ-кендалла, однако статистика только асимптотически имеет нормальное распределение (n 3), а для маленькой выборки (n = 8) корректнее пользоваться таблицей критических точек. H: корреляционная связь отсутствует. При альтернативе: корреляция положительна, критические значения r-спирмена,643; τ-кендалла,571. Т.е. на уровне 5% оба коэффициента положительные. При альтернативе: корреляция 8

9 Иткина А.Я. ненулевая, критические значения r-спирмена,738; τ-кендалла,643. Т.е. на уровне 5% оба коэффициента ненулевые. Проверка гипотез о различии корреляций 1 Рассмотрим два примера, в которых будет проверена гипотеза H о равенстве коэффициентов корреляции в генеральных совокупностях. Пример 2. Изучался вопрос о влиянии антикоррозийного покрытия S на частоту аварий на трубопроводах. В течение полугода на 5 линейных участках трубопровода без покрытия и на 36 участках с покрытием фиксировалось количество аварий и толщина стенки трубы в месте аварии. Корреляция Пирсона для первой выборки составила r1,59, для второй r2,42. Можно ли предположить, что связь между толщиной стенки и количеством аварий исчезает при использовании антикоррозийного покрытия? В данном примере два анализируемых коэффициента корреляции рассчитаны по независимым выборкам. Процедура проверки H для независимых выборок состоит из следующих шагов. 1. Z-преобразование Фишера исходных коэффициентов корреляции (функция ФИШЕР() в Excel): и r ln 2 1 r, для заданных в примере коэффициентов 1 1,59 1 ln,68 2 1,59 1 1,42 ln,42 2. Расчет статистики критерия по формуле:,68, N 3 N ,1. 3. Сравнение с крит. По таблице стандартных нормальных вероятностей находим крит 1,96 для уровня значимости 5% и получаем крит. 1 Методы и идеи этой части заимствованы из учебного пособия: Наследов А.Д. Математические методы психологического исследования. СПб.: Речь, 212. С

10 Коэффициенты корреляции и специфика их применения 4. Вывод: коэффициенты корреляции статистически не отличимы, а следовательно антикоррозийное покрытие не повлияло на связь аварий с толщиной стенки трубы. Пример 3. В Германии изучалась связь между количеством солнечных часов в неделю (x), выработкой электричества с фотоэлементов (y), а также выработкой электричества с ветрогенераторных установок (). Исследование проводилось в светлое время суток. Важно было понять часто ли совпадает увеличение и падение электрогенерации из нескольких ВИЭ, а также изучить степень предсказуемости ветрогенерации, поскольку метеостанции лучше предсказывают солнечные дни, нежели силу ветра. Была собрана информация за 39 недель и вычислены коэффициенты парной корреляции r,71; r,4; r,29. xy x y Процедура проверки гипотезы о совпадении корреляционной связи между зависимыми выборками, какими в данном случае являются количество солнечных часов и электрогенерация из двух разных источников в эти же часы состоит из ета Z-критерия и вывода на основе сравнения с крит. Использование алгоритма тестирования таких гипотез для независимых выборок может привести к ошибкам за счет меньшей мощности такой проверки. Формула для (r r) N xy x (1 rxy) (1 rx) 2 ry (2 ry rxy rx)(1 rxy rx ry). Для имеющихся данных получилось равным 2,13, что больше, чем 1,96. Соответственно мы делаем вывод о том, что на уровне значимости 5% крит гипотезу следует отвергнуть. При этом, если выбрать уровень значимости равный 1%, основания для отвержения гипотезы отсутствовали бы. вывода К сожалению в случае, когда исходные данные не позволяют сделать уверенного оказывается неустойчивым к небольшому изменению исходных данных. При проверке отказалось, что увеличение уменьшению r x всего на четыре сотые приводит к до 1,9. Т.е. только при заметном отклонении от крит можно сделать уверенный вывод о совпадении/несовпадении коэффициентов корреляции в генеральной совокупности данных. 1

11 Иткина А.Я. Частный коэффициент корреляций Поскольку коэффициент корреляции отражает лишь математически наличие/отсутствие связи между переменными, возникает вопрос об истинной и ложной корреляции. Т.е. действительно ли связь между переменными носит осмысленный характер или она вызвана лишь влиянием выбросов или третьей переменной. В первом случае ошибочных выводов по коэффициенту корреляции можно избежать, рассмотрев облако точек для переменных. Второй случай более сложный, поскольку требует догадаться, что могло вызвать ложную корреляцию. Чтобы проиллюстрировать данную проблему рассмотрим данные по связи энергопотребления на душу населения, квт*час на чел./год (х) в нескольких странах с размером территории этих стран, кв. км (у). По выборке из 44 стран был рассчитан коэффициент корреляции Пирсона, который оказался равен,79. На Рис. 3 видно, что облако распадается на отдельные части, что вызывает сомнения в правильности применения коэффициента корреляции. Внимательно изучив список стран, вошедших в выборку, было сделано предположение о необходимости разделить их по ВВП на душу населения, $ США () Рис. 3. Облако точек: по оси х площадь стран; по у энергопотребление. Частный коэффициент корреляции показывает, какова была бы связь между двумя переменными, при условии, что влияние другой (других) переменных исключается. Частные коэффициенты могут быть разных порядков. Порядок коэффициента определяется числом факторов, влияние которых исключается. Здесь мы 11

12 Коэффициенты корреляции и специфика их применения рассматриваем только частный коэффициент корреляции первого порядка. После введения дополнительной переменной получены rx,93 и ry,76. r xy/ rxy rx ry,79,93,76, (1 rx)(1 ry) (1,93)(1,76) Проверим статистическую значимость частного коэффициента корреляции. Число степеней свободы уменьшилось до n 3. t rxy / n3,39. 1r 1, xy/ Поскольку t t (,25;41) 2,2 гипотезу об отсутствии корреляционной крит связи между электропотреблением и площадью территории страны на уровне значимости 5% необходимо отвергнуть. Однако эта связь не столь существенна, как казалось вначале. 12

13 Иткина А.Я. ПРИЛОЖЕНИЕ 1 Таблица критических значений рангового коэффициента корреляции Спирмена 2 (для проверки односторонних альтернатив; n объем выборки; α уровень значимости) 2 С сайта Йоркского университета (Великобритания) 13

14 Коэффициенты корреляции и специфика их применения ПРИЛОЖЕНИЕ 2 Таблица критических значений рангового коэффициента корреляции Кендалла 3 (для проверки односторонних альтернатив; n объем выборки; α уровень значимости) 3 С сайта Йоркского университета (Великобритания) 14


ТЕСТОВЫЙ КОНТРОЛЬ ПО МОДУЛЮ 2 1. Предположение, проверяемое при помощи научных методов а) научная гипотеза; б) статистическая гипотеза; в) гипотеза исследования; г) задача исследования. 2. Проверяемое

Куда мне отсюда идти? А куда ты хочешь попасть? А мне все равно, только бы попасть куда-нибудь. Тогда все равно куда идти. Куда-нибудь ты обязательно попадешь. Льюис Кэрролл Выбор статистического критерия

КОРРЕЛЯЦИОННЫЙ АНАЛИЗ Линейная корреляция Как показано выше, облако точек можно описать двумя линиями регрессии регрессией X на Y и Y на X. Чем меньше угол между этими прямыми, тем сильнее зависимость

3 Методы статистической обработки данных 3. Анализ таблиц сопряженности. Для исследования взаимосвязи пары качественных признаков между собой применяется анализ таблиц сопряженности. Таблица сопряженности

Лекция 0.3. Коэффициент корреляции В эконометрическом исследовании вопрос о наличии или отсутствии зависимости между анализируемыми переменными решается с помощью методов корреляционного анализа. Только

7. КОРРЕЛЯЦИОННО-РЕГРЕССИОННЫЙ АНАЛИЗ Линейная регрессия Метод наименьших квадратов () Линейная корреляция () () 1 Практическое занятие 7 КОРРЕЛЯЦИОННО-РЕГРЕССИОННЫЙ АНАЛИЗ Для решения практических

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ НОВОСИБИРСКИЙ ГОСУДАРСТВЕННЫЙ

Эконометрическое моделирование Лабораторная работа Корреляционный анализ Оглавление Понятие корреляционного и регрессионного анализа... 3 Парный корреляционный анализ. Коэффициент корреляции... 4 Задание

Корреляция Материал из Википедии свободной энциклопедии Корреля ция статистическая взаимосвязь двух или нескольких случайных величин (либо величин которые можно с некоторой допустимой степенью точности

Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования «МАТИ» Российский государственный технологический университет им. К.Э. Циолковского

Лекция 8. Непараметрические критерии независимости. Корреляционный анализ Грауэр Л.В., Архипова О.А. CS Center Санкт-Петербург, 2014 Грауэр Л.В., Архипова О.А. (CSC) Непараметрические критерии... Санкт-Петербург,

Лекция Корреляционный анализ. Описательные статистики. Коэффициент корреляции определяется: xy Корреляционный анализ M mx Y m Коэффициент показывает меру линейной зависимости между x и y, где x и y среднеквадратичные

УДК...0 КОРРЕЛЯЦИОННЫЙ АНАЛИЗ ИЗМЕРЕНИЙ РЕЖИМНЫХ ПАРАМЕТРОВ В ЗАДАЧЕ УПРАВЛЕНИЯ ЭЛЕКТРИЧЕСКОЙ СИСТЕМЫ Павлюков В.С., Павлюков С.В. Южно-Уральский государственный университет, г. Челябинск, Россия Основные

СТАТИСТИЧЕСКИЙ ВЫВОД 1. Введение в проблему статистического вывода 2. Статистические гипотезы 3. Статистический критерий 4. Статистическая значимость 5. Классификация статистических критериев 6. Содержательная

Методические указания Корреляция Регрессией Y на X или условным математическим ожиданием случайной величины Y относительно случайной величины X называется функция вида М (Y/ x)=f(x). Регрессией X на Y

Лекция 6. Методы измерения тесноты парной корреляционной связи Признаки могут быть представлены в количественных, порядковых и номинальных шкалах. В зависимости от того, по какой шкале представлены признаки,

Лекция 7. Непараметрические критерии независимости. Грауэр Л.В., Архипова О.А. CS Center Санкт-Петербург, 2015 Грауэр Л.В., Архипова О.А. (CSC) Критерии независимости Санкт-Петербург, 2015 1 / 31 Cодержание

Методические указания для выполнения лабораторной работы Найти выборочное уравнение линейной регрессии Y на X на основании корреляционной таблицы. Методические указания Регрессией Y на X или условным математическим

Проверка статистических гипотез 1 Основные понятия. Нулевая гипотеза (H 0) утверждение о параметре генеральной совокупности (параметрах генеральных совокупностей) или распределении, которое необходимо

Лекция 8. Непараметрические критерии однородности и независимости Буре В.М., Грауэр Л.В. ШАД Санкт-Петербург, 2013 Буре В.М., Грауэр Л.В. (ШАД) Непараметрические критерии... Санкт-Петербург, 2013 1 / 39

7 Корреляционный и регрессионный анализ. Корреляционный анализ статистических данных.. Регрессионный анализ статистических данных. Статистические связи между переменными можно изучать методами дисперсионного,

Лекция 7 ПРОВЕРКА СТАТИСТИЧЕСКИХ ГИПОТЕЗ ЦЕЛЬ ЛЕКЦИИ: определить понятие статистических гипотез и правила их проверки; провести проверку гипотез о равенстве средних значений и дисперсий нормально распределенной

Поволжский государственный технологический университет Кафедра РТиМБС Методические указания к выполнению лабораторной работы 4 по дисциплине «Автоматизация обработки экспериментальных данных» Анализ сходства

МАТЕМАТИЧЕСКИЕ МЕТОДЫ В ЗЕМЛЕУСТРОЙСТВЕ Карпиченко Александр Александрович доцент кафедры почвоведения и земельных информационных систем Литература elib.bsu.by Математические методы в землеустройстве [Электронный

11 Тесты по математической статистике Тест 1 P 1 Для любого x имеет место соотношение F x правую часть Заполните Дана выборка (3,1,3,1,4, 5) Составьте вариационный ряд 3 Что оценивают x и выборочная

Лекция 7 ЭКОНОМЕТРИКА 7 Анализ качества эмпирического уравнения множественной линейной регрессии Построение эмпирического уравнения регрессии является начальным этапом эконометрического анализа Построенное

МИНОБРНАУКИ РОССИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ВОЛГОГРАДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» КАМЫШИНСКИЙ ТЕХНОЛОГИЧЕСКИЙ ИНСТИТУТ (ФИЛИАЛ)

Проверка статистической гипотезы о математическом ожидании нормального распределения при известной дисперсии. Пусть имеется нормально распределенная случайная величина N, определенная на множестве объектов

3.4. СТАТИСТИЧЕСКИЕ ХАРАКТЕРИСТИКИ ВЫБОРОЧНЫХ ЗНАЧЕНИЙ ПРОГНОЗНЫХ МОДЕЛЕЙ До сих пор мы рассматривали способы построения прогнозных моделей стационарных процессов, не учитывая одной весьма важной особенности.

Теория вероятностей и медицинская статистика АНАЛИЗ ЗАВИСИМОСТЕЙ Лекция 7 Кафедра медицинской информатики РУДН Содержание лекции 1. Шкалы измерений 2. Обзор статистических методов анализа 3. Корреляционный

Иткина А.Я. Эконометрика на практике Введение. Исследование в любой области знания предполагает получение результатов обычно в виде чисел. Однако просто собрать данные недостаточно. Даже объективно и корректно

Лекция 10. Методы измерения тесноты парной корреляционной связи. Часть 1 Признаки могут быть представлены в количественных, порядковых и номинальных шкалах. В зависимости от того, по какой шкале представлены

Содержание задачи: Исследовать влияние денежных доходов населения на оборот розничной торговли - Денежные доходы населения (в среднем на душу населения в месяц), руб. y - Оборот розничной торговли, млрд.

Лекция 5 ЭКОНОМЕТРИКА 5 Проверка качества уравнения регрессии Предпосылки метода наименьших квадратов Рассмотрим модель парной линейной регрессии X 5 Пусть на основе выборки из n наблюдений оценивается

МВДубатовская Теория вероятностей и математическая статистика Лекция 4 Регрессионный анализ Функциональная статистическая и корреляционная зависимости Во многих прикладных (в том числе экономических) задачах

САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ИНСТИТУТ ПСИХОЛОГИИ И СОЦИАЛЬНОЙ РАБОТЫ Факультет прикладной психологии Очно-заочная форма обучения САМОСТОЯТЕЛЬНАЯ РАБОТА По дисциплине: «МАТЕМАТИЧЕСКИЕ МЕТОДЫ В ПСИХОЛОГИИ»

Медицинская статистика Специальность «Лечебное дело» Проверка статистических гипотез Критерии согласия Определение статистической гипотезы Статистическая гипотеза - предположение о виде распределения или

Проверка статистических гипотез 1. Статистические гипотезы; 2. Критерии проверки гипотез; 3. Проверка параметрических гипотез; 4. Критерий Пирсона Завершить показ Статистические гипотезы. Статистические

Информационные технологии в физической культуре и спорте Процессы преобразования информации связаны с информационными технологиями. Технология в переводе с греческого - искусство, умение, а это не что

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное бюджетное образовательное учреждение высшего образования «НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ СТРОИТЕЛЬНЫЙ

Домашнее задание. Обработка результатов наблюдений двухмерного случайного вектора.1. Содержание и порядок выполнения работы Дана парная выборка (x i ; y i) объема 50 из двумерного нормально распределенного

Тема 4. Анализ матрицы корреляции и его место в регрессионном анализе 4.1. Коэффициент корреляции Коэффициент парной корреляции (Пирсона) показывает меру линейной связи между переменными он принимает значения

Корреляционный и регрессионный анализ. План. 1. Понятие корреляции. Функциональная и корреляционная зависимость. Графики рассеяния. 2. Коэффициент корреляции и его свойства. Коэффициент детерминации. 3.

65 4 ДИСПЕРСИОННЫЙ АНАЛИЗ Дисперсионный анализ разработан для сельскохозяйственных и биологических исследований Р.А. Фишером на основе открытого им закона распределения отношения средних квадратов (дисперсий)

Лукьянова Е.А. Медицинская статистика Специальность «Лечебное дело» 3 Проверка статистических гипотез Критерии согласия Критерий Стьюдента для связанных выборок Критерий Стьюдента для несвязанных выборок

ИЗУЧЕНИЕ СТАТИСТИЧЕСКИХ ЗАКОНОМЕРНОСТЕЙ РАДИОАКТИВНОГО РАСПАДА Лабораторная работа 8 Цель работы: 1. Подтверждение случайного, статистического характера процессов радиоактивного распада ядер.. Ознакомление

55 3 РЕГРЕССИОННЫЙ АНАЛИЗ 3 Постановка задачи регрессионного анализа Экономические показатели функционирования предприятия (отрасли хозяйства) как правило представляются таблицами статистических данных:

РЕГРЕССИОННЫЙ АНАЛИЗ Пусть у нас есть серии значений двух параметров. Подразумевается, что у одного и того же объекта измерены два параметра. Нам надо выяснить есть ли значимая связь между этими параметрами.

МУЛЬТИКОЛЛИНЕАРНОСТЬ МОДЕЛИ МНОЖЕСТВЕННОЙ РЕГРЕССИИ Серьезной проблемой при построении моделей множественной регрессии на основе метода наименьших квадратов (МНК) является мультиколлинеарность Мультиколлинеарность

Федеральное агентство воздушного транспорта Федеральное государственное образовательное учреждение высшего профессионального образования МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ГРАЖДАНСКОЙ АВИАЦИИ

Задача.Имеются следующие данные: Вариант 8 Номер семьи 3 4 5 6 7 8 9 0 Число совместно проживающих членов семьи, 3 3 4 4 4 5 6 7 7 чел. Годовое потребление электроэнергии, тыс. кв.- час 5 8 0 4 6 9 3 8.

Практическая работа Обработка и анализ результатов коллективных решений Цель работы определить коллективную оценку объектов (факторов и пр с точки зрения их воздействия на некоторую цель или показатель

Квантили Выборочная квантиль x p порядка p (0 < p < 1) определяется как элемент вариационного ряда выборки x (1), x () с номером [p]+1, где [a] целая часть числа а В статистической практике используется

ТЕСТОВЫЙ КОНТРОЛЬ ПО МОДУЛЮ 1 1. Множество объектов, в отношении которого формулируется исследовательская гипотеза а) случайная выборка; б) генеральная совокупность; в) зависимая выборка; г) независимая

3 ПРОВЕРКА СТАТИСТИЧЕСКИХ ГИПОТЕЗ 3 Основные понятия статистической проверки гипотезы Статистическая проверка гипотез тесно связана с теорией оценивания параметров распределений В экономике, технике, естествознании,

Лекция 11. Методы измерения тесноты парной корреляционной связи. Часть Признаки могут быть представлены в количественных, порядковых и номинальных шкалах. В зависимости от того, по какой шкале представлены

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПРОМЫШЛЕННЫХ

Коэффициент корреляции – это величина, которая может варьировать в пределах от +1 до –1. В случае полной положительной корреляции этот коэффициент равен плюс 1 (говорят о том, что при увеличении значения одной переменной увеличивается значение другой переменной), а при полной отрицательной – минус 1 (свидетельствуют об обратной связи, т.е. При увеличении значений одной переменной, значения другой уменьшаются).

Пр1.:

График зависимости застенчивости и дипресивности. Как видим, точки (испытуемые) расположены не хаотично, а выстраиваются вокруг одной линии, причём, глядя на эту линию можно сказать, что чем выше у человека выражена застенчивость, тем больше депрессивность, т. е. эти явления взаимосвязаны.

Пр2.: График для Застенчивости и Общительности. Мы видим, что с увеличением застенчивости общительность уменьшается. Их коэффициент корреляции -0,43. Таким образом, коэффициент корреляции больший от 0 до 1 говорит о прямопропорциональной связи (чем больше… тем больше…), а коэффициент от -1 до 0 о обратнопропорциональной (чем больше… тем меньше…)

В случае если коэффициент корреляции равен 0, обе переменные полностью независимы друг от друга.

Корреляционная связь - это связь, где воздействие отдельных факторов проявляется только как тенденция (в среднем) при массовом наблюдении фактических данных. Примерами корреляционной зависимости могут быть зависимости между размерами активов банка и суммой прибыли банка, ростом производительности труда и стажем работы сотрудников.

Используется две системы классификации корреляционных связей по их силе: общая и частная.

Общая классификация корреляционных связей:1) сильная, или тесная при коэффициенте корреляции r>0,70;2) средняя при 0,500,70, а не просто корреляция высокого уровня значимости.

В следующей таблице написаны названия коэффициентов корреляции для различных типов шкал.

Дихотомическая шкала (1/0) Ранговая (порядковая) шкала
Дихотомическая шкала (1/0) Коэфициент ассоциации Пирсона, коэффициент четырехклеточной сопряженности Пирсона. Бисериальная корреляция
Ранговая (порядковая) шкала Рангово-бисериальная корреляция. Ранговый коэффициент корреляции Спирмена или Кендалла.
Интервальная и абсолютная шкала Бисериальная корреляция Значения интервальной шкалы переводятся в ранги и используется ранговый коэффициент Коэффициент корреляции Пирсона (коэффициент линейной корреляции)

При r =0 линейная корреляционная связь отсутствует. При этом групповые средние переменных совпадают с их общи­ми средними, а линии регрессии параллельны осям координат.

Равенство r =0 говорит лишь об отсутствии линейной корреляционной зависимости (некоррелирован­ности переменных), но не вообще об отсутствии корреляционной, а тем более, статистической зависимости.

Иногда вывод об отсутствии корреляции важнее наличия сильной корреляции. Нулевая корреляция двух переменных может свидетельствовать о том, что никакого влияния одной переменной на другую не существует, при условии, что мы доверяем результатам измерений.

В SPSS: 11.3.2 Коэффициенты корреляции

До сих пор мы выясняли лишь сам факт существования статистической зависимости между двумя признаками. Далее мы попробуем выяснить, какие заключения можно сделать о силе или слабости этой зависимости, а также о ее виде и направленности. Критерии количественной оценки зависимости между переменными называются коэффициентами корреляции или мерами связанности. Две переменные коррелируют между собой положительно, если между ними существует прямое, однонаправленное соотношение. При однонаправленном соотношении малые значения одной переменной соответствуют малым значениям другой переменной, большие значения - большим. Две переменные коррелируют между собой отрицательно, если между ними существует обратное, разнонаправленное соотношение. При разнонаправленном соотношении малые значения одной переменной соответствуют большим значениям другой переменной и наоборот. Значения коэффициентов корреляции всегда лежат в диапазоне от -1 до +1.

В качестве коэффициента корреляции между переменными, принадлежащими порядковой шкале применяется коэффициент Спирмена, а для переменных, принадлежащих к интервальной шкале - коэффициент корреляции Пирсона (момент произведений). При этом следует учесть, что каждую дихотомическую переменную, то есть переменную, принадлежащую к номинальной шкале и имеющую две категории, можно рассматривать как порядковую.

Для начала мы проверим существует ли корреляция между переменными sex и psyche из файла studium.sav. При этом мы учтем, что дихотомическую переменную sex можно считать порядковой. Выполните следующие действия:

· Выберите в меню команды Analyze (Анализ) Descriptive Statistics (Дескриптивные статистики) Crosstabs... (Таблицы сопряженности)

· Перенесите переменную sex в список строк, а переменную psyche - в список столбцов.

· Щелкните на кнопке Statistics... (Статистика). В диалоге Crosstabs: Statistics установите флажок Correlations (Корреляции). Подтвердите выбор кнопкой Continue.

· В диалоге Crosstabs откажитесь от вывода таблиц, установив флажок Supress tables (Подавлять таблицы). Щелкните на кнопке ОК.

Будут вычислены коэффициенты корреляции Спирмена и Пирсона, а также проведена проверка их значимости:

/ Теория. Коэффициент корреляции

Коэффициент корреляции - двумерная описательная статистика, количественная мера взаимосвязи (совместной изменчивости) двух переменных.

К настоящему времени разработано великое множество различных коэффициентов корреляции. Однако самые важные меры связи - Пирсона, Спирмена и Кендалла . Их общей особенностью является то, что они отражают взаимосвязь двух признаков , измеренных в количественной шкале - ранговой или метрической .

Вообще говоря, любое эмпирическое исследование сосредоточено на изучении взаимосвязей двух или более переменных .

Если изменение одной переменной на одну единицу всегда приводит к изменению другой переменной на одну и ту же величину, функция является линейной (график ее представляет прямую линию); любая другая связь - нелинейная . Если увеличение одной переменной связано с увеличением другой, то связь - положительная ( прямая ) ; если увеличение одной переменной связано с уменьшением другой, то связь - отрицательная ( обратная ) . Если направление изменения одной переменной не меняется с возрастанием (убыванием) другой переменной, то такая функция - монотонная ; в противном случае функцию называют немонотонной .

Функциональные связи являются идеализациями. Их особенность заключается в том, что одному значению одной переменной соответствует строго определенное значение другой переменной. Например, такова взаимосвязь двух физических переменных - веса и длины тела (линейная положительная). Однако даже в физических экспериментах эмпирическая взаимосвязь будет отличаться от функциональной связи в силу неучтенных или неизвестных причин: колебаний состава материала, погрешностей измерения и пр.

При изучении взаимосвязи признаков из поля зрения исследователя неизбежно выпадает множество возможных причин изменчивости этих признаков. Результатом является то, что даже существующая в реальности функциональная связь между переменными выступает эмпирически как вероятностная (стохастическая): одному и тому же значению одной переменной соответствует распределение различных значений другой переменной (и наоборот).

Простейшим примером является соотношение роста и веса людей. Эмпирические результаты исследования этих двух признаков покажут, конечно, положительную их взаимосвязь. Но несложно догадаться, что она будет отличаться от строгой, линейной, положительной - идеальной математической функции, даже при всех ухищрениях исследователя по учету стройности или полноты испытуемых. Вряд ли на этом основании кому-то придет в голову отрицать факт наличия строгой функциональной связи между длиной и весом тела.

Итак, функциональная взаимосвязь явлений эмпирически может быть выявлена только как вероятностная связь соответствующих признаков.

Наглядное представление о характере вероятностной связи дает диаграмма рассеивания - график, оси которого соответствуют значениям двух переменных, а каждый испытуемый представляет собой точку. В качестве числовой характеристики вероятностной связи используются коэффициенты корреляции.

Можно ввести три градации величин корреляции по силе связи:

r < 0,3 - слабая связь (менее 10% от общей доли дисперсии);

0,3 < r < 0,7 - умеренная связь (от 10 до 50% от общей доли дисперсии);

r > 0,7 - сильная связь (50% и более от общей доли дисперсии).

Частная корреляция

Часто бывает так, что две переменные коррелируют друг с другом только за счет того, что обе они меняются под влиянием некоторой третьей переменной. То есть, на самом деле связь между соответствующими свойствами этих двух переменных отсутствует, но проявляется в статистической взаимосвязи, или корреляции, под влиянием общей причины третьей переменной).

Таким образом, если корреляция между двумя переменными уменьшается, при фиксируемой третьей случайной величине, то это означает, что их взаимозависимость возникает частично через воздействие этой третьей переменной. Если же частная корреляция равна нулю или очень мала, то можно сделать вывод о том, что их взаимозависимость целиком обусловлена собственным воздействием и никак не связана с третьей переменной.

Также, если частная корреляция больше первоначальной корреляции между двумя переменными, то можно сделать вывод о том, что другие переменные ослабили связь, или "скрыли" корреляцию.

К тому же необходимо помнить о том, что корреляция не есть причинность . Исходя из этого, мы не имеем права безапелляционно говорить о наличии причинной связи: некоторая совершенно отличная от рассматриваемых в анализе переменная может быть источником этой корреляции. Как при обычной корреляции, так и при частных корреляциях предположение о причинности должно всегда иметь собственные внестатистические основания.

Коэффициент корреляции Пирсона

r- Пирсона применяется для изучения взаимосвязи двух метрических переменных , измеренных на одной и той же выборке . Существует множество ситуаций, в которых уместно его применение. Влияет ли интеллект на успеваемость на старших курсах университета? Связан ли размер заработной платы работника с его доброжелательностью к коллегам? Влияет ли настроение школьника на успешность решения сложной арифметической задачи? Для ответа на подобные вопросы исследователь должен измерить два интересующих его показателя у каждого члена выборки.

На величину коэффициента корреляции не влияет то, в каких единицах измерения представлены признаки. Следовательно, любые линейные преобразования признаков (умножение на константу, прибавление константы) не меняют значения коэффициента корреляции. Исключением является умножение одного из признаков на отрицательную константу: коэффициент корреляции меняет свой знак на противоположный.

Корреляция Пирсона есть мера линейной связи между двумя переменными . Она позволяет определить , насколько пропорциональна изменчивость двух переменных . Если переменные пропорциональны друг другу, то графически связь между ними можно представить в виде прямой линии с положительным (прямая пропорция) или отрицательным (обратная пропорция) наклоном.

На практике связь между двумя переменными, если она есть, является вероятностной и графически выглядит как облако рассеивания эллипсоидной формы. Этот эллипсоид, однако, можно представить (аппроксимировать) в виде прямой линии, или линии регрессии. Линия регрессии - это прямая, построенная методом наименьших квадратов: сумма квадратов расстояний (вычисленных по оси Y) от каждой точки графика рассеивания до прямой является минимальной.

Особое значение для оценки точности предсказания имеет дисперсия оценок зависимой переменной. По сути, дисперсия оценок зависимой переменной Y - это та часть ее полной дисперсии, которая обусловлена влиянием независимой переменной X. Иначе говоря, отношение дисперсии оценок зависимой переменной к ее истинной дисперсии равно квадрату коэффициента корреляции.

Квадрат коэффициента корреляции зависимой и независимой переменных представляет долю дисперсии зависимой переменной, обусловленной влиянием независимой переменной, и называется коэффициентом детерминации . Коэффициент детерминации, таким образом, показывает, в какой степени изменчивость одной переменной обусловлена (детерминирована) влиянием другой переменной.

Коэффициент детерминации обладает важным преимуществом по сравнению с коэффициентом корреляции. Корреляция не является линейной функцией связи между двумя переменными. Поэтому, среднее арифметическое коэффициентов корреляции для нескольких выборок не совпадает с корреляцией, вычисленной сразу для всех испытуемых из этих выборок (т.е. коэффициент корреляции не аддитивен). Напротив, коэффициент детерминации отражает связь линейно и поэтому является аддитивным: допускается его усреднение для нескольких выборок.

Дополнительную информацию о силе связи дает значение коэффициента корреляции в квадрате - коэффициент детерминации: это часть дисперсии одной переменной, которая может быть объяснена влиянием другой переменной. В отличие от коэффициента корреляции коэффициент детерминации линейно возрастает с увеличением силы связи.

Коэффициенты корреляции Спирмена и τ-Кендалла (ранговые корреляции). Если обе переменные, между которыми изучается связь, представлены в порядковой шкале, или одна из них - в порядковой, а другая - в метрической, то применяются ранговые коэффициенты корреляции: Спирмена или τ - Кенделла . И тот , и другой коэффициент требует для своего применения предварительного ранжирования обеих переменных .

Коэффициент ранговой корреляции Спирмена - это непараметрический метод , который используется с целью статистического изучения связи между явлениями . В этом случае определяется фактическая степень параллелизма между двумя количественными рядами изучаемых признаков и дается оценка тесноты установленной связи с помощью количественно выраженного коэффициента.

Если члены группы численностью были ранжированы сначала по переменной x, затем – по переменной y, то корреляцию между переменными x и y можно получить, просто вычислив коэффициент Пирсона для двух рядов рангов. При условии отсутствия связей в рангах (т.е. отсутствия повторяющихся рангов) по той и другой переменной, формула для Пирсона может быть существенно упрощена в вычислительном отношении и преобразована в формулу, известную как Спирмена .

Мощность коэффициента ранговой корреляции Спирмена несколько уступает мощности параметрического коэффициента корреляции .

Коэффицент ранговой корреляции целесообразно применять при наличии небольшого количества наблюдений . Данный метод может быть использован не только для количественно выраженных данных , но также и в случаях , когда регистрируемые значения определяются описательными признаками различной интенсивности .

Коэффициент ранговой корреляции Спирмена при большом количестве одинаковых рангов по одной или обеим сопоставляемым переменным дает огрубленные значения. В идеале оба коррелируемых ряда должны представлять собой две последовательности несовпадающих значений

Альтернативу корреляции Спирмена для рангов представляет корреляция τ-Кендалла . В основе корреляции, предложенной М.Кендаллом, лежит идея о том, что о направлении связи можно судить, попарно сравнивая между собой испытуемых: если у пары испытуемых изменение по x совпадает по направлению с изменением по y, то это свидетельствует о положительной связи, если не совпадает - то об отрицательной связи.

Коэффициенты корреляции были специально разработаны для численного определения силы и направления связи между двумя свойствами, измеренными в числовых шкалах (метрических или ранговых).

Как уже упоминалось, максимальной силе связи соответствуют значения корреляции +1 (строгая прямая или прямо пропорциональная связь) и -1 (строгая обратная или обратно пропорциональная связь), отсутствию связи соответствует корреляция, равная нулю.

Дополнительную информацию о силе связи дает значение коэффициента детерминации: это часть дисперсии одной переменной, которая может быть объяснена влиянием другой переменной.

Тема 12 Корреляционный анализ

Функциональная зависимость и корреляция . Еще Гиппократ в VI в. до н. э. обратил внимание на наличие связи между телосложением и темпераментом людей, между строением тела и предрасположенностью к тем или иным заболеваниям. Определенные виды подобной связи выявлены также в животном и растительном мире. Так, существует зависимость между телосложением и продуктивностью у сельскохозяйственных животных; известна связь между качеством семян и урожайностью культурных растений и т.д. Что же касается подобных зависимостей в экологии, то существуют зависимости между содержанием тяжелых металлов в почве и снежном покрове от их концентрации в атмосферном воздухе и т.п. Поэтому естественно стремление использовать эту закономерность в интересах человека, придать ей более или менее точное количественное выражение.

Как известно, для описания связей между переменными величинами применяют математические понятие функции f , которая ставит в соответствие каждому определенному значению независимой переменной x определенное значение зависимой переменной y , т.е. . Такого рода однозначные зависимости между переменными величинамиx и y называют функциональными . Однако такого рода связи в природных объектах встречаются далеко не всегда. Поэтому зависимость между биологическими, а также и экологическими признаками имеет не функциональный, а статистический характер, когда в массе однородных индивидов определенному значению одного признака, рассматриваемого в качестве аргумента, соответствует не одно и то же числовое значение, а целая гамма распределяющихся в вариационный ряд числовых значений другого признака, рассматриваемого в качестве зависимой переменной, или функции. Такого рода зависимость между переменными величинами называется корреляционной или корреляцией..

Функциональные связи легко обнаружить и измерить на единичных и групповых объектах, однако этого нельзя проделать с корреляционными связями, которые можно изучать только на групповых объектах методами математической статистики. Корреляционная связь между признаками бывает линейной и нелинейной, положительной и отрицательной. Задача корреляционного анализа сводится к установлению направления и формы связи между варьирующими признаками, измерению ее тесноты и, наконец, к проверке достоверности выборочных показателей корреляции.

Зависимость между переменными X и Y можно выразить аналитически (с помощью формул и уравнений) и графически (как геометрическое место точек в системе прямоугольных координат). График корреляционной зависимости строят по уравнению функции или , которая называетсярегрессией . Здесь и – средние арифметические, найденные при условии, чтоX или Y примут некоторые значения x или y . Эти средние называются условными .

11.1. Параметрические показатели связи

Коэффициент корреляции . Сопряженность между переменными величинами x и y можно установить, сопоставляя числовые значения одной из них с соответствующими значениями другой. Если при увеличении одной переменной увеличивается другая, это указывает на положительную связь между этими величинами, и наоборот, когда увеличение одной переменной сопровождается уменьшением значения другой, это указывает на отрицательную связь .

Для характеристики связи, ее направления и степени сопряженности переменных применяют следующие показатели:

    линейной зависимость – коэффициент корреляции ;

    нелинейный – корреляционной отношение .

Для определения эмпирического коэффициента корреляции используют следующую формулу:

. (1)

Здесь s x и s y – средние квадратические отклонения.

Коэффициент корреляции можно вычислить, не прибегая к расчету средних квадратических отклонений, что упрощает вычислительную работу, по следующей аналогичной формуле:

. (2)

Коэффициент корреляции – безразмерное число, лежащее в пределах от –1 до +1. При независимом варьировании признаков, когда связь между ними полностью отсутствует, . Чем сильнее сопряженность между признаками, тем выше значение коэффициента корреляции. Следовательно, при этот показатель характеризует не только наличие, но и степень сопряженности между признаками. При положительной или прямой связи, когда большим значениям одного признака соответствуют большие же значения другого, коэффициент корреляции имеет положительный знак и находится в пределах от 0 до +1, при отрицательной или обратной связи, когда большим значениям одного признака соответствуют меньшие значения другого, коэффициент корреляции сопровождается отрицательным знаком и находится в пределах от 0 до –1.

Коэффициент корреляции нашел широкое применение в практике, но он не является универсальным показателем корреляционных связей, так как способен характеризовать только линейные связи, т.е. выражаемые уравнением линейной регрессии (см. тему 12). При наличии нелинейной зависимости между варьирующими признаками применяют другие показатели связи, рассмотренных ниже.

Вычисление коэффициента корреляции . Это вычисление производят разными способами и по-разному в зависимости от числа наблюдений (объема выборки). Рассмотрим отдельно специфику вычисления коэффициента корреляции при наличии малочисленных выборок и выборок большого объема.

Малые выборки . При наличии малочисленных выборок коэффициент корреляции вычисляют непосредственно по значениям сопряженных признаков, без предварительной группировки выборочных данных в вариационные ряды. Для этого служат приведенные выше формулы (1) и (2). Более удобными, особенно при наличии многозначных и дробных чисел, которыми выражаются отклонения вариант х i и y i от средних и , служат следующие рабочие формулы:

где ;

;

Здесь x i и y i – парные варианты сопряженных признаков x и y ; и –средние арифметические; – разность между парными вариантами сопряженных признаковx и y ; n – общее число парных наблюдений, или объем выборочной совокупности.

Эмпирический коэффициент корреляции, как и любой другой выборочный показатель, служит оценкой своего генерального параметра ρ и как величина случайная сопровождается ошибкой:

Отношение выборочного коэффициента корреляции к своей ошибке служит критерием для проверки нулевой гипотезы – предположения о том, что в генеральной совокупности этот параметр равен нулю, т.е. . Нулевую гипотезу отвергают на принятом уровне значимостиα , если

Значения критических точек t st для разных уровней значимости α и чисел степеней свободы приведены в табл.1 Приложений.

Установлено, что при обработке малочисленных выборок (особенно когда n < 30 ) расчет коэффициента корреляции по формулам (1) – (3) дает несколько заниженные оценки генерального параметра ρ , т.е. необходимо внести следующую поправку:

z-преобразование Фишера . Правильное применение коэффициента корреляции предполагает нормальное распределение двумерной совокупности сопряженных значений случайных величин x и y . Из математической статистики известно, что при наличии значительной корреляции между переменными величинами, т.е. когда R xy > 0,5 выборочное распределение коэффициента корреляции для большего числа малых выборок, взятых из нормально распределяющейся генеральной совокупности, значительно отклоняются от нормальной кривой.

Учитывая это обстоятельство, Р. Фишер нашел более точный способ оценки генерального параметра по значению выборочного коэффициента корреляции. Этот способ сводится к замене R xy преобразованной величиной z, которая связана с эмпирическим коэффициентом корреляции, следующим образом:

Распределение величины z является почти неизменным по форме, так как мало зависит от объема выборки и от значения коэффициента корреляции в генеральной совокупности, и приближается к нормальному распределению.

Критерием достоверности показателя z является следующее отношение:

Нулевая гипотеза отвергается на принятом уровне значимости α и числе степеней свободы . Значения критических точекt st приведены в табл.1 Приложений.

Применение z-преобразования позволяет с большей уверенностью оценивать статистическую значимость выборочного коэффициента корреляции, а также и разность между эмпирическими коэффициентами , когда в этом возникает необходимость.

Минимальный объем выборки для точной оценки коэффициента корреляции. Можно рассчитать объем выборки для заданного значения коэффициента корреляции, который был бы достаточен для опровержения нулевой гипотезы (если корреляция между признаками Y и X действительно существует). Для этого служит следующая формула:

где n – искомый объем выборки; t – величина, заданная по принятому уровню значимости (лучше для α = 1%); z – преобразованный эмпирический коэффициент корреляции.

Большие выборки . При наличии многочисленных исходных данных их приходится группировать в вариационные ряды и, построив корреляционную решетку, разность по ее клеткам (ячейкам) общие частоты сопряженных рядов. Корреляционная решетка образуется пересечением строк и столбцов, число которых равно числу групп или классов коррелируемых рядов. Классы располагаются в верхней строке и в первой (слева) столбце корреляционной таблицы, а общие частоты, обозначаемые символом f xy , – в клетках корреляционной решетки, составляющей основную часть корреляционной таблицы.

Классы, помещенные в верхней строке таблицы, обычно располагаются слева направо в возрастающем порядке, а в первом столбце таблицы – сверху вниз в убывающем порядке. При таком расположении классов вариационных рядов их общие частоты (при наличии положительной связи между признаками Y и X ) будут распределяться по клеткам решетки в виде эллипса по диагонали от нижнего левого угла к верхнему правому углу решетки или (при наличии отрицательной связи между признаками) в направлении от верхнего левого угла к нижнему правому углу решетки. Если же частоты f xy распределяются по клеткам корреляционной решетки более или менее равномерно, не образуя фигуры эллипса, это будет указывать на отсутствие корреляции между признаками.

Распределение частот f xy по клеткам корреляционной решетки дает лишь общее представление о наличии или отсутствии связи между признаками. Судить о тесноте или менее точно лишь по значению и знаку коэффициента корреляции . При вычислении коэффициента корреляции с предварительной группировки выборочных данных в интервальные вариационные ряды не следует брать слишком широкие классовые интервалы. Грубая группировка гораздо сильнее сказывается на значении коэффициента корреляции, чем это имеет место при вычислении средних величин и показателей вариации.

Напомним, что величина классового интервала определяется по формуле

где x max , x min – максимальная и минимальная варианты совокупности; К – число классов, на которые следует разбить вариацию признака. Опыт показал, что в области корреляционного анализа величину К можно поставить в зависимость от объема выборки примерно следующим образом (табл.1).

Таблица 1

Объем выборки

Значение К

50 ≥ n > 30

100 ≥ n > 50

200 ≥ n > 100

300 ≥ n > 200

Как и другие статистические характеристики, вычисляемые с предварительной группировкой исходных данных в вариационные ряды, коэффициент корреляции определяют разными способами, дающими совершенно идентичные результаты.

Способ произведений . Коэффициент корреляции можно вычислить используя основные формулы (1) или (2), внеся в них поправку на повторяемость вариант в димерной совокупности. При этом, упрощая символику, отклонения вариант от их средних обозначим через а , т.е. и . Тогда формула (2) с учетом повторяемости отклонений примет следующее выражение:

Достоверность этого показателя оценивается с помощью критерия Стьюдента, который представляет отношение выборочного коэффициента корреляции к своей ошибке, определяемой по формуле

Отсюда и если эта величина превышает стандартное значение критерия Стьюдентаt st для степени свободы и уровне значимостиα (см. Таблицу 2 Приложений), то нулевую гипотезу отвергают.

Способ условных средних . При вычислении коэффициента корреляции отклонения вариант (“классов”) можно находить не только от средних арифметических и , но и от условных средних А х и A y . При этом способе в числитель формулы (2) вносят поправку и формула приобретает следующий вид:

где f xy – частоты классов одного и другого рядов распределения; и , т.е. отклонения классов от условных средних, отнесенные к величине классовых интерваловλ ; n – общее число парных наблюдений, или объем выборки; и – условные моменты первого порядка, гдеf x – частоты ряда Х , аf y – частоты ряда Y ; s x и s y – средние квадратические отклонения рядов X и Y , вычисляемые по формуле .

Способ условных средних имеет преимущество перед способом произведений, так как позволяет избегать операции с дробными числами и придавать один и тот же (положительный) знак отклонениям a x и a y , что упрощает технику вычислительной работы, особенно при наличии многозначных чисел.

Оценка разности между коэффициентами корреляции . При сравнении коэффициентов корреляции двух независимых выборок нулевая гипотеза сводится к предположению о том, что в генеральной совокупности разница между этими показателями равна нулю. Иными словами, следует исходить из предположения, что разница, наблюдаемая между сравниваемыми эмпирическими коэффициентами корреляции, возникла случайно.

Для проверки нулевой гипотезы служит t-критерий Стьюдента, т.е. отношение разности между эмпирическими коэффициентами корреляции R 1 и R 2 к своей статистической ошибке, определяемой по формуле:

где s R1 и s R2 – ошибки сравниваемых коэффициентов корреляции.

Нулевая гипотеза опровергается при условии, что для принятого уровне значимостиα и числе степеней свободы .

Известно, что более точную оценку достоверности коэффициента корреляции получают при переводе R xy в число z . Не является исключением и оценка разности между выборочными коэффициентами корреляции R 1 и R 2 , особенно в тех случаях, когда последние вычислены на выборках сравнительно небольшого объема (n < 100 ) и по своему абсолютному значению значительно превышают 0,50.

Разность оценивают с помощью t-критерия Стьюдента, который строят по отношению этой разности к своей ошибке, вычисляемой по формуле

Нулевую гипотезу отвергают, если для и принятого уровня значимостиα.

Корреляционное отношение . Для измерения нелинейной зависимости между переменными x и y используют показатель, который называют корреляционным отношением , который описывает связь двусторонне. Конструкция корреляционного отношения предполагает сопоставление двух видов вариации: изменчивости отдельных наблюдений по отношению к частным средним и вариации самих частных средних по сравнению с общей средней величиной. Чем меньшую часть составит первый компонент по отношению ко второму, тем теснота связи окажется большей. В пределе, когда никакой вариации отдельных значений признака возле частных средних не будет наблюдаться, теснота связи окажется предельно большой. Аналогичным образом, при отсутствии изменчивости частных средних теснота связи окажется минимальной. Так как это соотношение вариации может быть рассмотрено для каждого из двух признаков, получается два показателя тесноты связи – h yx и h xy . Корреляционное отношение является величиной относительной и может принимать значения от 0 до 1. При этом коэффициенты корреляционного отношения обычно не равны друг другу, т.е. . Равенство между этими показателями осуществимо только при строго линейной зависимости между признаками. Корреляционное отношение является универсальным показателем: оно позволяет характеризировать любую форму корреляционной связи – и линейную, и нелинейную.

Коэффициенты корреляционного отношения h yx и h xy определяют рассмотренными выше способами, т.е. способом произведений и способом условных средних.

Способ произведений . Коэффициенты корреляционного отношения h yx и h xy определяют по следующим формулам:

где и – групповые дисперсии,

а и – общие дисперсии.

Здесь и – общие средние арифметические, а и – групповые средние арифметические;f yi – частоты ряда Y , а f xi – частоты ряда X ; k – количество классов; n – количество варьирующих признаков.

Рабочие формулы для расчета коэффициентов корреляционного отношения следующие:

Способ условных средних . Определяя коэффициенты корреляционного отношения по формулам (15), отклонения классовых вариант x i и y i можно брать не только от средних арифметических и , но и от условных средних А х и A y . В таких случаях групповые и общие девиаты рассчитываются по формулам и , а также, и , где и .

В развернутом виде формулы (15) выглядят следующим образом:

;

. (17)

В этих формулах и – отклонения классов от условных средних, сокращенные на величину классовых интервалов; значенияa y и a x выражаются числами натурального ряда: 0, 1, 2, 3, 4, … .Остальные символы объяснены выше.

Сравнивая способ произведений со способом условных средних, нельзя не заметить преимущество первого способа, особенно в тех случаях, когда приходится иметь дело с многозначными числами. Как и другие выборочные показатели, корреляционное отношение является оценкой своего генерального параметра и, как величина случайная, сопровождается ошибкой, определяемой по формуле

Достоверность оценки корреляционного отношения можно проверить по t-критерию Стьюдента. H 0 -гипотеза исходит из предположения, что генеральный параметр равен нулю, т.е. должно выполнятся следующее условие:

для числа степеней свободы и уровня значимостиα.

Коэффициент детерминации . Для истолкования значений, принимаемых показателями тесноты корреляционной связи, используют коэффициенты детерминации , которые показывают, какая доля вариации одного признака зависит от варьирования другого признака. При наличии линейной связи коэффициентом детерминации служит квадрат коэффициента корреляции R2 xy , а при нелинейной зависимости между признаками y и x – квадрат корреляционного отношения h2 yx . Коэффициенты детерминации дают основание построить следующую примерную шкалу, позволяющую судить о тесноте связи между признаками: при связь считается средней; указывает на слабую связь и лишь при можно судить о сильной связи, когда около 50 % вариации признакаY зависит от вариации признака X .

Оценка формы связи . При строго линейной зависимости между переменными величинами y и x осуществляется равенство . В таких случаях коэффициенты корреляционного отношения совпадают со значением коэффициента корреляции. Совпадут при этом по своему значению и коэффициенты детерминации, т.е. . Следовательно, по разности между этими величинами можно судить о форме корреляционной зависимости между переменнымиy и x :

Очевидно, что при линейной связи между переменными y и x показатель γ будет равен нулю; если же связь между переменными y и x нелинейная, γ > 0.

Показатель γ является оценкой генерального параметра и, как величина случайная, нуждается в проверке достоверности. При этом исходят из предположения о том, что связь между величинами y и x линейна (нулевая гипотеза). Проверить эту гипотезу позволяет F-критерий Фишера:

где a – численность групп, или классов вариационного ряда; N – объем выборки. Нулевую гипотезу отвергают, если для (находят по горизонтали табл.2 Приложений), (находят в первом столбце той же таблицы) и принятого уровня значимостиα.

Определение значимости корреляции

Классификации коэффициентов корреляции

Коэффициенты корреляции характеризуются силой и значимостью.

Классификация коэффициентов корреляции по силе.

Классификация коэффициентов корреляции по значимости.

Не следует путать 2 этих классификации, так как они определяют разные характеристики. Сильная корреляция может оказаться случайной и, стало быть, недостоверной. Особенно часто это случается в выборке с малым объемом. А в большой выборке даже слабая корреляция может оказаться высокозначимой.

После вычисления коэффициента корреляции необходимо выдвинуть статистические гипотезы:

Н 0: показатель корреляции значимо не отличается от нуля (является случайным).

Н 1: показатель корреляции значимо отличается от нуля (является неслучайным).

Проверка гипотез осуществляется сравнением полученных эмпирических коэффициентов с табличными критическими значениями. Если эмпирическое значение достигает критического или превышает его, то нулевая гипотеза отвергается: r эмп ≥ r кр Но, Þ Н 1 . В таких случаях делают вывод, что обнаружена достоверность различий.

Если эмпирическое значение не превышает критического, то нулевая гипотеза не отвергается: r эмп < r кр Þ Н 0 . В таких случаях делают вывод, что достоверность различий не установлена.

/ Статистика / Корреляция

Вычисление матрицы парных коэффициентов

корреляции

Для расчета матрицы парных коэффициентов корреляции следует вызвать меню Корреляционные матрицы модуля Основ ные статистики .

Рис. 1 Панель модуля основные статистики

Основные этапы проведения корреляционного анализа в системе SТАТІSТІСА рассмотрим на данных примера (см. рис. 2). Исходные данные представляют собой результаты наблюдений за деятельностью 23 предприятий одной из отрас-лей промышленности.

Рис.2 Исходные данные

Графы таблицы содержат следующие показатели:

РЕНТАБЕЛ - рентабельность, %;

ДОЛЯ РАБ - удельный вес рабочих в составе ППП, ед.;

ФОНДООТД - фондоотдача, ед.;

ОСНФОНДЫ - среднегодовая стоимость основных производственных фондов, млн руб.;

НЕПРРАСХ - непроизводственные расходы, тыс. руб. Требуется исследовать зависимость рентабельности от дрУ"

гих показателей.

Предположим, что рассматриваемые признаки в генераль-ной совокупности подчиняются нормальному закону распределения, а данные наблюдений представляют собой выборку из совокупности.

Вычислим парные коэффициенты корреляции между всеми переменными. После выбора строки Корреляционные матрицы на экране появится диалоговое окно Корреляции Пирсона . Название обусловлено тем, что впервые этот коэффициент был Пирсоном, Эджвортом и Велдоном.

Выберем переменные для анализа. Для этого в диалоговом окне имеются две кнопки: Квадр. матрица (один список) и Прямоуг. матрица (два списка).


Рис. 3 Диалоговое окно корреляционного анализа

Первая кнопка предназначена для вычисления матрицы обыч. ного симметричного вида с парными коэффициентами корреля-ции всех сочетаний переменных. Если при анализе используют-ся все показатели, то в диалоговом окне выбора переменных можно нажать кнопку Выбрать все. (Если переменные идут не подряд, их можно выбрать щелчком мыши с одновременно нажатой клавишей Ctrl )


Если нажать кнопку Подроб. диалогового окна, то для каж-дой переменной будут отображаться длинные имена. Щелкнув эту кнопку еще раз (она примет название Кратко ), получим короткие имена.

Кнопка Информация открывает окно для выбранной пере-менной, в котором можно просмотреть ее характеристики: длинное имя, формат отображения, отсортированный список значе-ний, описательные статистики (количество значений, среднее, стандартное отклонение).

После выбора переменных нажмем ОК или кнопку Корре ляции диалогового окна Корреляции Пирсона . На экране появится рассчитанная корреляционная матрица.

Значимые коэффициенты корреляции на экране выделяются красным цветом.

В нашем примере показатель рентабельности оказался наиболее связан с показателями фондоотдача (связь прямая) и производственные расходы (обратная связь, предполагающая реньшение V с увеличением X). Но насколько тесно взаимоязаны признаки? Тесной считается связь при значениях коэфциента по модулю больше чем 0.7 и слабой - меньше 0.3. таким образом, при дальнейшем построении уравнения регрессии следует ограничиться показателями «Фондоотдача» и «Непроизводственные расходы» как наиболее информативными.

Однако в нашем примере наблюдается явление мультиколшрности, когда существует связь между самими независимыми переменными (парный коэффициент корреляции по модулю больше чем 0.8).

Опция прямоугольная матрица (два списка переменных) открывает диалоговое окно выбора двух списков переменных. Поместим как на рисунке


В результате получаем прямоугольную корреляционную матрицу, содержащую лишь коэффициенты корреляции с зависимой переменной.


Если установлена опция Корр. Матрицу (выдел. значимые), то после нажатия кнопкиКорреляция будет построена матрица с коэф., выделенными на уровне значимостир .


Если выбрана опция Подробная таблица результатов , то, на-жав кнопку Корреляции , получим таблицу, которая содержит не только коэффициенты корреляции, но также средние, стан-дартные отклонения, коэффициенты уравнения регрессии, сво-бодный член в уравнении регрессии и другие статистики


Когда переменные имеют небольшую относительную вариацию (отношение стандартного отклонения к среднему меньше чем 0.0000000000001), требуется более высокая степень оценки. Ее можно задать, пометив галочкой опцию Вычисления с повы-шенной точностью диалогового окна Корреляции Пирсона.

Режим работы с пропущенными данными определяется оп-цией Построчное удаление ПД. Если ее выбрать, то SТАТІSТІСА проигнорирует все наблюдения, имеющие пропуски. В против-ном случае производится их попарное удаление.

Помеченный галочкой режим Отображать длинные имена переменных приведет к получению таблицы с длинными имена-ми переменных.

Графическое изображение корреляционных зависимостей

Диалоговое окно Корреляции Пирсона содержит ряд кнопок для получения графического изображения корреляционных зависимостей.

Опция 2М рассеяния строит последовательность диаграмм Рассеяния для каждой выбранной переменной. Окно для их выбора идентично рисунку 6. Слева следует указать висимые переменные, справа независимую - РЕНТАБЕЛ. Нажав ОК, получим график, на котором будет изображена одогнанная регрессионная прямая и доверительные границы рогноза.

Линейный коэффициент корреляции дает наиболее объективную оценку тесноты связи, если расположение точек в системе координат напоминает прямую линию или вытянутый эллипс, если же точки расположены в виде кривой, то коэффициент орреляции дает заниженную оценку.

На основе графика мы можем еще раз подтвердить взаимосвязь между показателями рентабельности и фондоотдачи, как данные наблюдений расположились в виде наклонного эллипса. Надо сказать, что связь считается тем теснее, чем бли-же точки к главной оси эллипса.

В нашем примере изменение показателя фондоотдачи на единицу приведет к изменению рентабельности на 5.7376%.

Посмотрим влияние показателя непроизводственных расходов на значение рентабельности. Для этого построим аналогичный график

Анализируемые данные уже меньше напоминают по своей форме эллипс, да и коэффициент корреляции несколько ниже. Найденное значение коэффициента регрессии показывает, что при увеличении непроизводственных расходов на 1 тысячу рублей рентабельность уменьшается на 0.7017%.

Следует заметить, что построение множественной регрессии (рассмотренное в последующих главах), когда уравнение со-держит одновременно оба признака, приводит к другим значе-ниям коэффициентов регрессии, что объясняется взаимодействи-ем объясняющих переменных между собой.

При использовании кнопки С именами точки на диаграмме рассеяния приобретут соответствующие им номера или имена, если они предварительно заданы.

Следующая опция с указанием графика Матричный строит атрицу диаграмм рассеяния для выбранных переменных.

ждый графический элемент этой матрицы содержит корреля-яонные поля, образуемые соответствующими переменными с

поженной на них линией регрессии.

При анализе матрицы диаграмм рассеяния следует обратить внимание на те графики, линии регрессии которых имеют суще-ственный наклон к оси X, что позволяет предположить суще-ствование взаимозависимости между соответствующими при-знаками.

Опция ЗМ рассеяния строит трехмерное корреляционное поле для выбранных переменных. Если использована кнопка С именами, точки на диаграмме рассеяния будут помечены номерами или именами соответствующих наблюдений, если они их имеют.

Графическая опция Поверхность строит ЗМ диаграмму рассеяния для выбранной тройки переменных вместе с подогнанной поверхностью второго порядка.

Опция Категор. диаграммы рассеяния в свою очередь строит каскад корреляционных полей для выбранных показателей.

После нажатия соответствующей кнопки программа попросит пользователя составить два их набора из отобранных ранее с помощью кнопки Переменные. Затем на экране появится новое

окно запроса для задания группирующей переменной, на основе которой будут классифицированы все имеющиеся наблюдения.

Результатом является построение корреляционных полей в резе групп наблюдений для каждой пары переменных, отне-яных к разным спискам

3.4. Расчет частных и множественных коэффици ентов корреляции

Для расчета частных и множественных коэффициентов кор. реляции вызовем модуль Множественная регрессия , используя кнопку переключателя модулей. На экране появится следующее диалоговое окно:

Нажав кнопку Переменные , выберем переменные для анализа: слева зависимую - рентабельность , а справа независимые - фондоотдача и непроизводственные расходы . Остальные переменные не будут участвовать в дальнейшем анализе - на основе проведения корреляционного анализа они признаны не-информативными для регрессионной модели.

В поле Файл ввода в качестве входных данных предлагаются обычные исходные данные, представляющие собой таблицу с переменными и наблюдениями, или корреляционная матрица. Корреляционную матрицу можно предварительно создать в самом модуле Множественная регрессия или вычислить с помо-щью опции Быстрые основные статистики.

При работе с файлом исходных данных можно задать ре-жим работы с пропусками:

    Построчное удаление. При выборе этой опции в анализе используются только те наблюдения, которые не имеют пропущенных значений во всех выбранных переменных.

    Замена средним. Пропущенные значения в каждой переменной заменяются средним, вычисленным по имеющимся комплектным наблюдениям.

    Попарное удаление пропущенных данных. Если выбрана эта опция, то при вычислении парных корреляций удаля-ются наблюдения, имеющие пропущенные значения в соответствующих парах переменных.

В поле Тип регрессии пользователь может выбрать стандартную или фиксированную нелинейную регрессию. По умолчачанию выбирается стандартный анализ множественной регрессии, при котором вычисляется стандартная корреляционная матрица всех выбранных переменных.

Режим Фиксированная нелинейная регрессия позволяет осуществить различные преобразования независимых переменных. Опция Провести анализ по умолчанию использует установки, соответствующие определению стандартной регрессионной рдели, включающей свободный член. Если эта опция отменена, то при щелчке мышью по кнопке ОК стартовой панели эется диалоговое окно Определение модели, в котором вы эжете выбрать как тип регрессионного анализа (например, пошаговый, гребневый и др.), так и другие опции.

Установив флажок строки опции Показывать описательные описательные , корр. матрицы и щелкнув ОК, получим диалоговое окно со статистическими характеристиками данных.

В нем вы можете просмотреть подробные описательные статистики (в том числе количество наблюдений, по которым был вычислен коэффициент корреляции для каждой пары переменных). Чтобы продолжить анализ и открыть диалоговое окно Определители модели, нажмите ОК.

Если анализируемые показатели имеют чрезвычайно малую относительную дисперсию, вычисляемую как общая дисперсия, деленная на среднее, то следует установить флажок около опции Вычисления с повышенной точностью для получения более точных значений элементов корреляционной матрицы.

Установив все необходимые параметры в диалоговом окне Множественная регрессия , нажмем ОК и получим результаты требуемых вычислений.

По данным нашего примера множественный коэффициент корреляции получился равным 0.61357990 и соответственно коэффициент детерминации - 0.37648029. Таким образом, лишь 37,6% дисперсии показателя «рентабельность» объясняется из-менением показателей «фондоотдачи» и «непроизводственных расходов». Такое низкое значение свидетельствует о недостаточ-ном числе факторов, введенных в модель. Попробуем изменить количество независимых переменных, дополнив список пере-менной «Основные фонды» (введение в модель показателя «доля рабочих в ППП» приводит к мультиколлениарности, что явля-ется недопустимым). Коэффициент детерминации несколько повысился, но не настолько, чтобы существенно улучшить результаты - его значение составило около 41%. Очевидно, наша дача требует дополнительных исследований по выявлению факторов, влияющих на рентабельность.

Значимость множественного коэффициента корреляции про-ряется по таблице Ф-критерия Фишера. Гипотеза о его значимости отвергается, если значение вероятности отклонения превышает заданный уровень (чаще всего берут а=0.1, 0.05; 0.01 0.001). В нашем примере р=0.008882 < 0.05, что свидетельствует о значимости коэффициента.

Таблица результатов содержит следующие графы:

    Коэффициент Бета (в) - стандартизованный коэффициент регрессии ддя соответствующей переменной;

    Частная корреляция - частные коэффициенты корреля-ции между соответствующей переменной и зависимой, при фиксировании влияния остальных, входящих в модель.

Частный коэффициент корреляции между рентабельностью и фондоотдачей в нашем примере равен 0.459899. Это означает, после ввода в модель показателя непроизводственных рас-эв влияние фондоотдачи на рентабельность несколько сни-пось - с 0.49 (значение парного коэффициента корреляции) 0.46. Аналогичный коэффициент для показателя непроизвод-аенных расходов также снизился - с 0.46 (значение парного коэффициента корреляции) до 0.42 (берут значение по модулю), характеризует изменение связи с зависимой переменной че ввода в модель показателя фондоотдачи.

    Получастная корреляция - корреляция между нескорректированной зависимой переменной и соответствующей не-зависимой с учетом влияния остальных, включенных в модель.

    Толерантность (определяется как 1 минус квадрат множественной корреляции между соответствующей переменной и всеми независимыми переменными в уравнении регрес- сии).

    Коэффициент детерминации - квадрат коэффициента множественной корреляции между соответствующей независимой переменной и всеми остальными переменными, входящими в регрессионное уравнение.

    1-значения - расчетное значение критерия Стьюдента для проверки гипотезы о значимости частного коэффициента корреляции с указанным (в скобках) числом степеней свободы.

    р-уровень! - вероятность отклонения гипотезы о значимости частного коэффициента корреляции.

В нашем случае полученное значение р для первого коэффициента (0.031277) меньше выбранного =0.05. Значение вто-рого коэффициента его несколько превышает (0.050676), что говорит о его незначимости на этом уровне. Но он значим, например, при =0.1 (в десяти случаях из ста гипотеза окажется все-таки неверна).

В нашем мире все взаимосвязано, где-то это видно невооруженным глазом, а где-то люди даже и не подозревают о существовании такой зависимости. Тем не менее в статистике, когда имеют в виду взаимную зависимость, часто употребляют термин "корреляция". Его нередко можно встретить и в экономической литературе. Давайте попробуем вместе разобраться, в чем состоит суть этого понятия, какие бывают коэффициенты и как трактовать полученные значения.

Итак, что такое корреляция? Как правило, под этим термином подразумевают статистическую взаимосвязь двух или нескольких параметров. Если изменяется значение одного или нескольких из них, это неизбежно сказывается на величине остальных. Для математического определения силы такой взаимозависимости принято использовать различные коэффициенты. Следует отметить, что в случае, когда изменение одного параметра не приводит к закономерному изменению другого, но влияет на какую-либо статистическую характеристику данного параметра, такая связь является не корреляционной, а просто статистической.

История термина

Для того чтобы лучше разобраться, что такое корреляция, давайте немного окунемся в историю. Данный термин появился в XVIII веке благодаря стараниям французского палеонтолога Этот ученый разработал так называемый «закон корреляции» органов и частей живых существ, который позволял восстановить облик древнего ископаемого животного, имея в наличии лишь некоторые его останки. В статистике это слово вошло в обиход с 1886 года с легкой руки английского статистика и биолога В самом названии термина уже содержится его расшифровка: не просто и не только связь - «relation», а отношения, имеющие между собой нечто совместное - «co-relation». Впрочем, четко объяснить математически, что такое корреляция, смог только ученик Гальтона, биолог и математик К. Пирсон (1857 - 1936). Именно он впервые вывел точную формулу для расчета соответствующих коэффициентов.

Парная корреляция

Так называют отношения между двумя конкретными величинами. К примеру, доказано, что ежегодные затраты на рекламу в Соединенных Штатах очень тесно связаны с величиной внутреннего валового продукта. Подсчитано, что между этими величинами в период с 1956 по 1977 год составил 0,9699. Другой пример - число посещений интернет-магазина и объем его продаж. Тесная связь выявлена между такими величинами, как пива и температура воздуха, среднемесячная температура для конкретного места в текущем и предыдущем году и т. д. Как трактовать коэффициент парной корреляции? Сразу отметим, что он принимает значение от -1 до 1, причем отрицательное число обозначает обратную, а положительное - прямую зависимость. Чем больше модуль результата подсчетов, тем сильнее величины влияют друг на друга. Нулевое значение обозначает отсутсвие зависимости, величина меньше 0,5 говорит о слабой, а в противном случае - о ярко выраженной взаимосвязи.

Корреляция Пирсона

В зависимости от того, по какой шкале измерены переменные, для расчетов применяют тот или иной Фехнера, Спирмена, Кендалла и т. д.). Когда исследуют интервальные величины, чаще всего используют индикатор, придуманный

Этот коэффициент показывает степень линейных связей между двумя параметрами. Когда говорят о корреляционном отношении, чаще всего его и имеют в виду. Данный показатель стал настолько популярным, что его формула есть в Excel и при желании можно самому на практике разобраться, что такое корреляция, не вдаваясь в тонкости сложных формул. Синтаксис этой функции имеет вид: PEARSON(массив1, массив2). В качестве первого и второго массивов обычно подставляют соответствующие диапазоны чисел.

Коэффициент корреляции

Корреля́ция - статистическая взаимосвязь двух или нескольких случайных величин (либо величин, которые можно с некоторой допустимой степенью точности считать таковыми). При этом, изменения одной или нескольких из этих величин приводят к систематическому изменению другой или других величин. Математической мерой корреляции двух случайных величин служит коэффициент корреляции .

Корреляция может быть положительной и отрицательной (возможна также ситуация отсутствия статистической взаимосвязи - например, для независимых случайных величин). Отрицательная корреляция - корреляция, при которой увеличение одной переменной связано с уменьшением другой переменной, при этом коэффициент корреляции отрицателен. Положительная корреляция - корреляция, при которой увеличение одной переменной связано с увеличением другой переменной, при этом коэффициент корреляции положителен.

Автокорреляция - статистическая взаимосвязь между случайными величинами из одного ряда, но взятых со сдвигом, например, для случайного процесса - со сдвигом по времени.

Пусть X ,Y - две случайные величины, определённые на одном вероятностном пространстве . Тогда их коэффициент корреляции задаётся формулой:

,

где cov обозначает ковариацию , а D - дисперсию , или, что то же самое,

,

где символ обозначает математическое ожидание .

Для графического представления подобной связи можно использовать прямоугольную систему координат с осями, которые соответствуют обеим переменным. Каждая пара значений маркируется при помощи определенного символа. Такой график называется «диаграммой рассеяния».

Метод вычисления коэффициента корреляции зависит от вида шкалы , к которой относятся переменные. Так, для измерения переменных с интервальной и количественной шкалами необходимо использовать коэффициент корреляции Пирсона (корреляция моментов произведений). Если по меньшей мере одна из двух переменных имеет порядковую шкалу, либо не является нормально распределённой, необходимо использовать ранговую корреляцию Спирмена или τ (тау) Кендала. В случае, когда одна из двух переменных является дихотомической, используется точечная двухрядная корреляция, а если обе переменные являются дихотомическими: четырёхполевая корреляция. Расчёт коэффициента корреляции между двумя недихотомическими переменными не лишён смысла только тогда, кода связь между ними линейна (однонаправлена).

Коэффициент корреляции Кенделла

Используется для измерения взаимной неупорядоченности.

Коэффициент корреляции Спирмена

Свойства коэффициента корреляции

если принять в качестве скалярного произведения двух случайных величин ковариацию , то норма случайной величины будет равна , и следствием неравенства Коши - Буняковского будет: . , где . Более того в этом случае знаки и k совпадают: .

Корреляционный анализ

Корреляционный анализ - метод обработки статистических данных, заключающийся в изучении коэффициентов (корреляции ) между переменными. При этом сравниваются коэффициенты корреляции между одной парой или множеством пар признаков для установления между ними статистических взаимосвязей.

Цель корреляционного анализа - обеспечить получение некоторой информации об одной переменной с помощью другой переменной. В случаях, когда возможно достижение цели, говорят, что переменные коррелируют . В самом общем виде принятие гипотезы о наличии корреляции означает что изменение значения переменной А, произойдет одновременно с пропорциональным изменением значения Б: если обе переменные растут то корреляция положительная , если одна переменная растёт, а вторая уменьшается, корреляция отрицательная .

Корреляция отражает лишь линейную зависимость величин, но не отражает их функциональной связности. Например, если вычислить коэффициент корреляции между величинами A = s i n (x ) и B = c o s (x ) , то он будет близок к нулю, т. е. зависимость между величинами отсутствует. Между тем, величины A и B очевидно связаны функционально по закону s i n 2 (x ) + c o s 2 (x ) = 1 .

Ограничения корреляционного анализа

Графики распределений пар (x,y) с соответствующими коэффициентами корреляций x и y для каждого из них. Обратите внимание, что коэффициент корреляции отражает линейную зависимость (верхняя строка), но не описывает кривую зависимости (средняя строка), и совсем не подходит для описания сложных, нелинейных зависимостей (нижняя строка).

  1. Применение возможно в случае наличия достаточного количества случаев для изучения: для конкретного вида коэффициента корреляции составляет от 25 до 100 пар наблюдений.
  2. Второе ограничение вытекает из гипотезы корреляционного анализа, в которую заложена линейная зависимость переменных . Во многих случаях, когда достоверно известно, что зависимость существует, корреляционный анализ может не дать результатов просто ввиду того, что зависимость нелинейна (выражена, например, в виде параболы).
  3. Сам по себе факт корреляционной зависимости не даёт основания утверждать, какая из переменных предшествует или является причиной изменений, или что переменные вообще причинно связаны между собой, например, ввиду действия третьего фактора.

Область применения

Данный метод обработки статистических данных весьма популярен в экономике и социальных науках (в частности в психологии и социологии), хотя сфера применения коэффициентов корреляции обширна: контроль качества промышленной продукции, металловедение , агрохимия , гидробиология , биометрия и прочие.

Популярность метода обусловлена двумя моментами: коэффициенты корреляции относительно просты в подсчете, их применение не требует специальной математической подготовки. В сочетании с простотой интерпретации, простота применения коэффициента привела к его широкому распространению в сфере анализа статистических данных.

Ложная корреляция

Часто заманчивая простота корреляционного исследования подталкивает исследователя делать ложные интуитивные выводы о наличии причинно-следственной связи между парами признаков, в то время как коэффициенты корреляции устанавливают лишь статистические взаимосвязи.

В современной количественной методологии социальных наук , фактически, произошел отказ от попыток установить причинно-следственные связи между наблюдаемыми переменными эмпирическими методами. Поэтому, когда исследователи в социальных науках говорят об установлении взаимосвязей между изучаемыми переменными, подразумевается либо общетеоретическое допущение, либо статистическая зависимость.

См. также

Wikimedia Foundation . 2010 .

Смотреть что такое "Коэффициент корреляции" в других словарях:

    Коэффициент корреляции - Математическое представление о степени связи между двумя сериями измерений. Коэффициент +1 обозначает четкую позитивную корреляцию: высокие показатели по одному параметру (например, рост) точно соотносятся с высокими показателями по другому… … Большая психологическая энциклопедия

    - ρ μера силы линейной связи между случайными величинами X и У: , где ЕХ математическое ожидание X; DX дисперсия X, EY математическое ожидание У; DY дисперсия У; 1 ≤ ρ ≤ 1. Если X, Y линейно связаны, то ρ = ± 1. Для… … Геологическая энциклопедия

    Англ. coefficient, correlation; нем. Korrelationskoeffizient. Мера тесноты связи двух или более переменных. Antinazi. Энциклопедия социологии, 2009 … Энциклопедия социологии

    коэффициент корреляции - — Тематики биотехнологии EN correlation coefficient … Справочник технического переводчика

    Коэффициент корреляции - (Correlation coefficient) Коэффициент корреляции это статистический показатель зависимости двух случайных величин Определение коэффициента корреляции, виды коэффициентов корреляции, свойства коэффициента корреляции, вычисление и применение… … Энциклопедия инвестора

    коэффициент корреляции - 1.33. коэффициент корреляции Отношение ковариации двух случайных величин к произведению их стандартных отклонений: Примечания 1. Эта величина всегда будет принимать значения от минус 1 до плюс 1, включая крайние значения. 2. Если две случайные… … Словарь-справочник терминов нормативно-технической документации

    КОЭФФИЦИЕНТ КОРРЕЛЯЦИИ - (correlation coefficient) мера ассоциации одной переменной с другой. См. Корреляция; Коэффициент корреляции производного значения Пирсона; Коэффициент ранговой корреляции спирмена … Большой толковый социологический словарь

    Коэффициент корреляции - CORRELATION COEFFICIENT Показатель степени линейной зависимости между двумя переменными величинами: Коэффициент корреляции может изменяться в пределах от 1 до 1. Если большим значениям одной величины соответствуют большие значения другой (и… … Словарь-справочник по экономике